

Working with the Genomics England Research Environment

Emily Perry

Research Engagement Manager 20th November 2024

Agenda

9.00- 9.10	Introduction and admin
9.10- 10.15	Teaching
10.15- 10.45	Break
10.45- 12.30	Teaching
12.30- 13.30	Lunch
13.30- 15.00	Teaching
15.00- 15.30	Break
15.30- 16.30	Teaching
16.30- 17.00	Open Q&A/clinic

We will cover...

Questions

No such thing as a stupid question

Helpers

Christian Bouwens Bioinformatician - Research Services

Alex Ho Bioinformatician BRSC

Matthieu Vizuete-Forster Bioinformatician - Research Services

Data security 🗘

- This training session will include data from the GEL Research Environment
- As part of your IG training you have agreed to not distribute these data in any way
- If you are in person, you are not allowed to take any photos or videos
- If you are joining virtually, you are not allowed to:
 - Invite colleagues to watch this training with you
 - Take any screenshots or videos of the training
 - Share your webinar link (we will remove anyone who is here twice)

What is the RE?

A virtual machine

A Trusted Research Environment

You can...

- Work with the data in the RE
- Copy/paste in
- Bring in Containers
- Access whitelisted websites
- Request to export the results of your analysis

You cannot...

- Share folders between your computer and the VM
- Copy/paste out
- Export files
- Access most of the internet

Files in the RE

What is the RE? demo

Task – working folders

- 1. Login to the RE
- 2. Identify your re_gecip or discovery_forum folder
- 3. Create a working directory in that folder for today
- 4. Copy the materials for today from gel_data_resources/example_ scripts/workshop_scripts/all_d ay_training_Nov_2024 to that working directory

Genomic data from the 100,000 Genomes Project and NHS GMS

100,000 Genomes Project

https://re-docs.genomicsengland.co.uk/release19/

100,000 Genomes rare disease

Dimics England

100,000 Genomes cancer

Genomics England

NHS GMS

NHS GMS rare disease

NHS GMS cancer

For EVERY genome

Alignment as BAM or CRAM files

Variant calls

as VCFs, including gVCF, repeats VCFs, structural variant VCFs

Analysis

Variant tiering and tumour mutational signatures

https://re-docs.genomicsengland.co.uk/genomic_data/

Genomic data demo

Interactive variant analysis (IVA)

- Find participants with genetic variants
- Filter variants in a participant by family genotypes
- Filter on genome features

IVA demo

Task – IVA

- 1. Go to the Variant Browser for cancer germline GRCh38
- 2. Filter to find all rare LoF SNVs in *BRCA2*.
- 3. Choose a variant and find all participants with that variant
- 4. Go to the case interpreter for 122006585 in the rare disease GRCh38 programme
- 5. Filter to find all LoF *de novo* variants within genes on the disorders of sex development panel.

https://re-docs.genomicsengland.co.uk/aggv2/ https://re-docs.genomicsengland.co.uk/somAgg/

Aggregate VCFs

Using bedtools to identify relevant chunks of the aggregate files

Excluding participants who have since withdrawn consent

Codebooks

Using bcftools to extract data from the aggregate VCFs

Rare disease tiering

Rare disease tiering based on PanelApp genes

List 🛧	Entity	Reviews	Mode of inheritance	Details	
Filter Entities					
Green	<u>ATP1A3</u>	1 review 1 green	MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted	Sources • Expert Review • Expert Review Green Phenotypes • 601338 • 614820 Tags	
Green	DFNB59	2 reviews 1 green	BIALLELIC, autosomal or pseudoautosomal	Sources • Expert Review • Expert Review Green Phenotypes • 610219 Tags new-gene-name	
Green	OPA1	2 reviews 1 green	MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted	Sources • Eligibility statement prior genetic testing • Expert Review Green Phenotypes • Optic atrophy 1, OMIM:165500 • Optic atrophy plus syndrome, OMIM:125250 Tags	
Green	<u>OTOF</u>	1 review 1 green	BIALLELIC, autosomal or pseudoautosomal	Sources Expert Review Green Radboud University Medical Center, Nijmegen Phenotypes 601071 Tags	
Amber	DIAPH3	3 reviews 1 red	BOTH monoallelic and biallelic, autosomal or pseudoautosomal	Sources Expert Review Amber Radboud University Medical Center, Nijmegen Phenotypes Auditory neuropathy, autosomal dominant, 1, 609129 Tags	

Rare disease Exomiser

Exomiser

Clinical and phenotype data

Rare disease phenotyping

- Disease classification
- HPO terms present/absent
- Measurements and observations (not universal)
 - general measurements
 - early childhood observations
 - details of imaging (but not results)
 - genetic tests
 - lab tests

https://re-docs.genomicsengland.co.uk/rare_disease_clinical/

https://re-docs.genomicsengland.co.uk/cancer_clinical/
Medical history – 100k (GMS coming soon)

- NHSE hospital episode statistics
- Mental health data
- Mortality

Genomics England data ingestion

Medical history coverage over time

https://re-docs.genomicsengland.co.uk/general_clinical/#hospital-episodes-statistics-from-nhse

Genomics England data ingestion

https://re-docs.genomicsengland.co.uk/general_clinical/#hospital-episodes-statistics-from-nhse

Hospital episode statistics

Outpatients op Planned day appointments in hospital Admitted patient care apc Overnight hospital stays

Critical care cc Time on life support Accident and emergency ae Unplanned emergency visits – walk-in or ambulance

https://re-docs.genomicsengland.co.uk/general_clinical/#hospital-episodes-statistics-from-nhse

We don't have...

Data dictionary

LabKey

- Central database of:
 - Clinical data
 - Results of bioinformatics analysis
 - Locations of genomic files
- Point and click interface
- API

Clinical data in LabKey demo

Task – LabKey

- Open the did table for the 100kGP.
- Use the data dictionary to find what field in the table is the date of imaging.
- 3. Filter the table to see details of imaging done after 1st January 2020.

Participant Explorer

- Search for participants by:
 - IDs
 - Clinical concepts
 - Personal details
- View/compare medical histories

Participant Explorer demo

Task – PX

- Search for female participants with hip dysplasia born since 2000.
- 2. Download the genome path details for all participants who match your search
- 3. Look at the medical history for one of the participants in your search.
- 4. Compare the medical history for the first four participants in your results, find clinical concepts common to all.

Programmatic access to clinical data

LabKey API

Combine queries between tables

Work in a variety of programming languages (support for Python and R) using SQL queries

Replicate queries between releases and analyses

Work locally and on the HPC

LabKey .netrc

- You can access the same data via the LabKey API as you can through other means
- You will need to configure access to the LabKey API with your username and password
 - In your home directory
 - On the HPC
- You do this by editing a file called .netrc

Programming tools in the RE

https://re-docs.genomicsengland.co.uk/hpc_jupyter/ https://re-docs.genomicsengland.co.uk/enable_rstudio/

LabKey API demo

Task – LabKey API

- Open the course Jupyter or Rstudio notebook
- 2. Create an SQL query to find solved cases in the NHS GMS cohort and pull out the recruited disease for each of them
- 3. Use the labkey_to_dataframe function to query LabKey
- 4. Visualise the dataframe

Cohort building

Rare disease cohort parameters

Cancer cohort parameters

Cancer cohort parameters

Common disease cohort parameters

General inclusion criteria

Match case/control

work with a single ethnicity

match sex ratios and age distribution

Derive age from dates

Cohort building demo

Task – Cohort building

- Use the LabKey API to identify all participants recruited for Motor Neurone Disease/Amyotrophic Lateral Sclerosis.
- 2. Expand the search to add in all participants with the HPO term HP:0007354 or the ICD10 code G12.2 in the medical history.
- 3. Get the filepaths of the gVCF files for all participants.

Use tools on the HPC

What is an HPC?

https://re-docs.genomicsengland.co.uk/hpc_about/

What is an HPC?

Lots of compute power

Shared with other researchers

https://re-docs.genomicsengland.co.uk/hpc_about/

How do we share resources?

https://re-docs.genomicsengland.co.uk/hpc_about/

How do we share resources?

https://re-docs.genomicsengland.co.uk/hpc_about/

What is a "job"?

71

https://re-docs.genomicsengland.co.uk/hpc_jobs/

Two types of job

Interactive jobs – the inter queue

require regular input

make decisions based on the results of the previous command

developing tools that you'll scale up later

exploratory analysis

interactive coding tools

GUI tools

A job on the inter queue

bsub -q inter -P <your_project_code> -R
rusage[mem=1000] -M 1000 -n 1 -Is /bin/bash

Do some work

bkill <job number>

https://re-docs.genomicsengland.co.uk/hpc_queues/#the-inter-queue

Software on the HPC

delly/1.2.6 pindel/0.2.5b8 denovoGear/1.1.1 platypus/0.8.1 discover/0.9.5 plink/1.9 dotnet/2.0.0 plink/2.00a3.3LM dotnet/8.0.1 (D) plink/2.0 drop/1.2.4 plink_seq/0.10 eigen/3.3.9 popdel/1.5.0 exomiser/13.3.0 proj/8.2.1 exonerate/2.2.0prsice-2/2.3.5 fastoc/0.12.1 pvcircos/1.0.2 fetk/1.9.3 pysam/0.22.0 ffmpeq/6.0 python/3.8 fribidi/1.0.12 python/3.8.1 aatk/4.5.0.0 python/3.11 gauchian/1.0.2 readline/8.0 gcc/10.4.0 regenie/3.4.1 gcta/1.94 repeatDetector/1.0 gdal/3.7.0 rtg-tools/3.12.1 geos/3.12.1 rvtests/2.1.0 aistic/2.0.23 saige/1.0.9 gmp/6.2.1 salmon/1.10.0 gnu-parallel/20190222 samtools/1.16.1 gnu/4.4 shapeit4/4.2.2 gradle/8.5 sniffles/1.0.11 guppy/3.4.5 somalier/0.2.19 gvcfgenotyper/2019.02.26 sqlite3/3.40.0 haplocheck/1.3.3 squirls/2.0.1 hipstr/0.7 stack/2.15.7 hisat2/2.2.1 star/2.7.2a hla-la/1.0.3 star/2.7.11a strelka/2.9.10 hmftools/2024-02-06 superSTR/1.0.1 homer/4.11 htslib/1.18 svanna/1.0.4 igv/2.17.1 tabix/1.18imagemagick/7.1.0 trimmomatic/0.39 iava/1.8 udunits/2.2.28 java/11.0.2 vcf2maf/1.6.21 java/17.0.2 vcfanno/0.3.4 iava/19.0.2 (D) vcflib/1.0.9 ia/1.7.1 vcftools/0.1.16 kallisto/0.50.1 verifyBamID/2.0.1 king/2.3.2 vt/0.57721 kraken/1.1.1 xz/5.4.7 kraken2/2.1.3 zlib/1.3 lapack/3.12.0 zulu/21.0.1 ldsc/1.0.1 aws-cli/2.15 singularity/3.8.3 singularity/4.1.1 (D)

(D)

(D)

(D)

AdapterRemoval/2.3.3 ldstore/2.0 libdeflate/1.20 AutoDock Vina/1.2.5 BWA/0.7.17 libgit2/1.6.2 BerkeleyDB/3.01 libtiff/3.4 Bio-DB-HTS/3.01 libtiff/4.3.0 CADD/1.6 libtiff/4.5.0 (D) CNView/1.0 libunwind/1.8.0 liftover/1.0 CNVnator/0.4.1 linasm/1.13 CaVEMan/1.15.3 ExpansionHunter/3.2.2 llvm/16.0.6 ExpansionHunter/4.0.2 (D) locuszoom/1.4 ExpansionHunterDenovo/0.9.0 0.2.0/qoqillol GSL/2.7 lumpy/0.3.1 mafft/7.520 MEDICC2/1.0.2 MPFR/4.2.0 magma/1.10 R/3.6.3 manta/1.6.0 R/4.2.1 matlab/8.1 R/4.3.3 (D) matlab/24.1 (D) REViewer/0.2.7 maven/3.9.6 aliview/1.28 meme/5.5.5 ampliconArchitect/1.3.r7 metal/1.0ampliconClassifier/1.1.1 miniconda3/23.11.0 annotSV/3.3.7 miniforge3/23.11.0-0 annovar/2019Nov minimap2/2.26 (D) mosaicHunter/2024-02-14 annovar/2024-03-14 ant/1.9.16 mplaver/1.5 apbs/3.4.1 msisensor-pro/1.2.0 asmc-asmc/2024-02-26 msisensor/0.6 automake/1.15 multigc/1.19 bamtools/2.5.2 music2/0.2 bcftools/1.16 mutserve/2.0.0-rc15 beagle/5.4 mutsia2cv/3.11 bedops/2.4.41 ncurses/6.4 bedtools/2.30.0 new fugue/2010-06-02 (D) nextflow/22.10.5 bedtools/2.31.0 blast+/2.15nextflow/23.04 blat/1.0 nextflow/23.10-with-plugins bolt-lmm/2.4.1 nextflow/23.10 boost/1.83 nextflow/24.04.2-with-plugins (D) bowtie2/2.5.2 nf-core/0.3.1 canvas/1.40.0.1613 nf-test/0.7.3 circos/0.69-9 nf-test/0.8.2 nf-test/0.9.0 clang/16.0.6 (D) nodejs/16.9.0 cmake/3.24.3 cpan/1.7047 openrefine/3.7.4 cromwell/v65 openssl/1.1.10 curl/7.81.0 pandoc/3.3 perl/5.38.2 cython/3.0.8 picard/3.1. Genomics cytoscape/3.10.1 Enaland

https://re-docs.genomicsengland.co.uk/hpc_using_software/

Loading software

module avail myfavouritesoftware

list of available software including the string: "myfavouritesoftware"

module load myfavouritesoftware/3.2

HPC interactive job and using tools demo

Task – Querying AggV2

- 1. Start an interactive job on the HPC
- Load bedtools and use it to find the AggV2 chunk that contains the locus 2:135851076
- Find all participants with an alternative allele at the locus 2:135851076
- 4. Kill your interactive job

https://re-docs.genomicsengland.co.uk/hpc_queues/

Queues

Short <4 hours

Medium 4-24 hours

Long 24 hours +

Choosing a batch queue

Creating a job - parameters

https://re-docs.genomicsengland.co.uk/hpc_jobs/

Memory usage

-R Memory usage

- How much memory you're requesting in MB
- rusage[mem=1000]
- There needs to be this much memory available on the queue for your job to start

-M Maximum memory

- Maximum memory in MB
- 1000

• Your job will terminate if you exceed this

-n number of nodes

• How many nodes

https://re-docs.genomicsengland.co.uk/hpc_memory/

Memory requested

Job killed after reaching LSF memory usage limit

PENDING

Memory requested

https://re-docs.genomicsengland.co.uk/hpc_memory/

Setting your memory request

Creating a job - parameters

https://re-docs.genomicsengland.co.uk/hpc_scripts/

A job on a batch queue – shell script

#!/bin/bash

Include your job submission details as #BSUB headers
#BSUB -q <your_queue>
#BSUB -P <yourProject>
#BSUB -o <path_to/job.%J.out>
#BSUB -e <path_to/job.%J.err>
#BSUB -J <jobName>
#BSUB -J <jobName>
#BSUB -R "rusage[mem=1000] span[hosts=1]"
#BSUB -M <max_memory_in_MB>
#BSUB -n <number_of_cores>
#BSUB -cwd <"your_dir">

bsub < my_submission_script.sh

Set your temp directory as the re_scratch folder export TMPDIR=/re_scratch/re_gecip/<your_GECIP>/<your_username> export TMPDIR=/re_scratch/re_discovery_forum/<your_discovery_forum_folder>/<your_username>

Load any required modules from the HPC
module load <moduleName>

The actual script you want to run

HPC batch job and checking output demo

Task – HPC batch jobs

- Write a script to submit a batch job to the short queue using 100 MB of memory and 1 CPU
- 2. In your job, load bcftools and use it to query AggV2 as in the previous exercise
- 3. Submit the job to the HPC
- 4. Look at the time spent and the memory usage of the job, how much memory would you request next time?

Workflows on the HPC

Pre-built workflows/scripts to...

Workflows/scripts provide

Code that runs with only minor tweaks to add your input

Optimised for use on our HPC and with our data

Step-by-step instructions for use

Output in standard or easy-tointerpret formats

Example input data and submission scripts

Customisable options

Workflows demo

only Singularity in the RE

94

Container types

Container repositories

Steps to import container

Containers demo

Task – Containers

- Pull the bcftools container from dockerhub: https://hub.docker.com/r/bioc ontainers/bcftools
- Mount the chr21 vcf from the 1000 Genomes high coverage to the container
- 3. Query the locus 21:46228958 to find 1000 Genomes participants with alternative alleles at this locus, using the bcftools container (you can copy the query from the AggV2 demo)

Restricted export

Our contract with participants

"...although researchers can look at your data and ask questions about it, they can only take away the answers to their questions (their results). They can't copy or take away any of your individual data."

The Airlock

Data in the RE

Outside world

What should go through the Airlock?

Airlock rules

Approved research project

Participants cannot be identified

Approved research project

Participant and sample IDs

?

Public sample IDs can be used with non-identifiable data (eg tumour mutational signatures). These allow meta-analyses between studies. These <u>always</u> require discussion with the Airlock committee.

Nucleotides

GGGATTACAG CCTCAGCCT GCGTGAGC TCGTG TAGT **ΔΑΑΑ** TTTG/ **CTA** TAAA ATA ΑΑΑ TGCC TGT TACA AATG GATTAA **ATGCC** TAACAAAA AGATC TCCLIAIUATC AG TCTGGGTCACAAATTTGTCTGTCACTGGT1

Rule of five

Summary and test statistics

Forms in Airlock

Export findings

Export analysis scripts and software

Contact clinical team and/or report potential diagnosis

Export findings

Research Network or Discovery Forum

Up to 20 files, up to 5GB

To check for consent for research

Describe everything, particularly unlabelled and non-standard

To check it matches your registered project

Publication, abstract, scientific talk, external analysis

Where you plan to publish and share

Export analysis scripts and software

What happens to my request?

Clinical collaboration

Examples of collaboration include:

- Request for patient consent to publish paper
- Inviting a clinician as a co-author on a paper
- Request for further health information or clinical tests
- To discuss with the clinician a potential diagnostic variant
- To offer laboratory tests to investigate in more detail whether a particular variant is likely to be diagnostic or not

Clinical collaboration

Research Network or Discovery Forum

To check it matches your registered project

What research has led to this finding? Who is your PI?

Yes or no, you can also use this form for submitting diagnostic discoveries

What is your reason for contact? What do you want from the clinician, and what are you offering them?

Airlock demo

Open Q&A/clinic

Questions

No such thing as a stupid question

Helpers

Christian Bouwens Bioinformatician - Research Services

Alex Ho Bioinformatician BRSC

Matthieu Vizuete-Forster Bioinformatician - Research Services

Wrap-up

Getting help

Check our documentation: <u>https://re-docs.genomicsengland.co.uk/</u> Click on the documentation icon in the environment

Contact our Service Desk: <u>https://jiraservicedesk.extge.co.uk/plugins/servlet/desk</u>

https://re-docs.genomicsengland.co.uk/containers_step_by_step/

Training sessions 2024

10/12 Introduction to the RE

Materials from past training all online

3rd Tuesday every month

Introduction to the RE

l Materials from past training all online

https://re-docs.genomicsengland.co.uk/upcoming/

Training sessions 2025	
14/1 Using the Research Environment for clinical diagnostic discovery	
11/2 Importing data and tools to use in the RE	! Materials
11/3 Working with R in the RE	from past
8/4 Working with python in the RE	training all
13/5 Building cancer cohorts and survival analysis	
10/6 Building rare disease cohorts with matching controls	

https://re-docs.genomicsengland.co.uk/upcoming/

Feedback

Thank you

Visit: <u>https://re-</u> docs.genomicsengland.co.uk