

Finding participants based on genotypes

Emily Perry

Research Engagement Manager

19th July 2022

Data security

- This training session will include data from the GEL Research Environment
- As part of your IG training you have agreed to not distribute these data in any way
- You are not allowed to:
 - Invite colleagues to watch this training with you
 - Take any screenshots or videos of the training
 - Share your webinar link (we will remove anyone who is here twice)
- We will record this training and distribute the censored video afterwards

Questions

Your microphones are all muted

Use the Zoom Q&A to ask questions

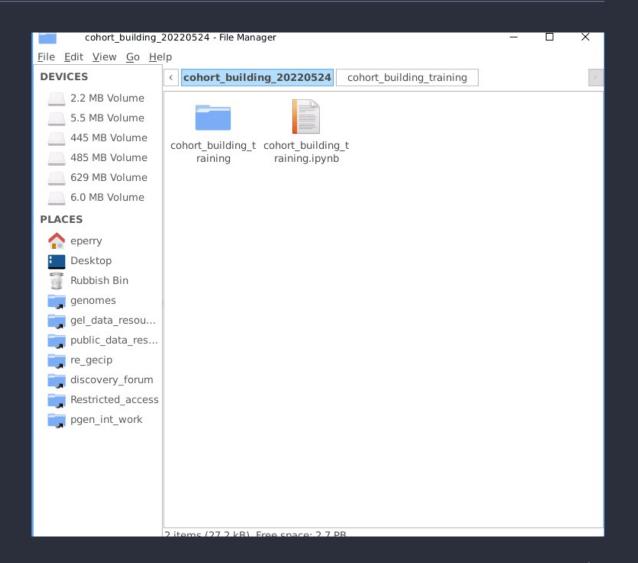
Upvote your favourite questions: if we are short on time we will prioritise those with the most votes.

Questions

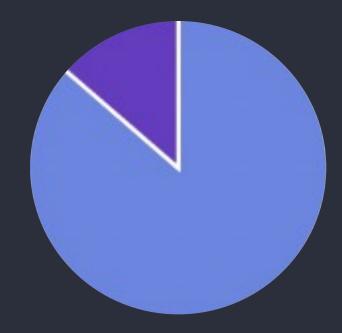
Ronnie Rodrigues Pereira Bioinformatician -Research Services

Alex Stuckey
Senior Bioinformatician Research Services

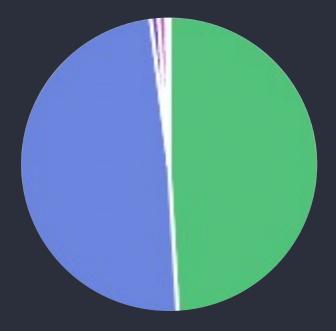
Christian Bouwens
Bioinformatician Research Services


Agenda

- (1) Introduction and admin
- (2) LabKey tables of variant genotypes
- (3) Finding genotypes with IVA
- 4 The Gene-Variant and SV/CNV workflows
- 5 Aggregated variant files
- (6) Using bcftools on the HPC
- 7 Getting help and questions

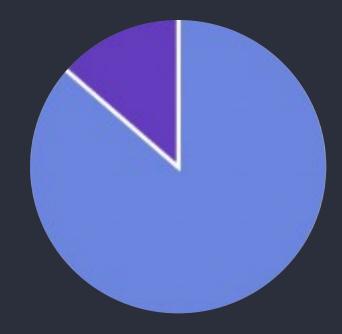

Materials

- Slides and video will be sent out to you after the session
- Scripts available in /gel_data_resources/example _scripts/workshop_scripts/coh ort_building_20220524


Genome assembly

Rare disease

GRCh38 (aka hg38) GRCh37 (aka hg19)


Cancer

Somatic GRCh38 Germline GRCh38 Germline GRCh37 Somatic GRCh37

Genome assembly

Rare disease

GRCh38 (aka hg38) GRCh37 (aka hg19)

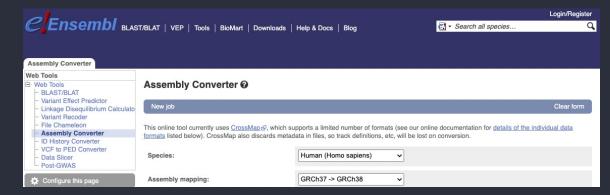
Cancer

Somatic GRCh38
Germline GRCh38
Germline GRCh37
Somatic GRCh37

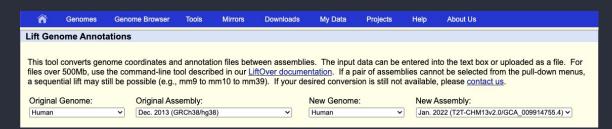
Genome assembly

chr13

ZAR1L ENST00000345108.6:c.931T>C


	GRCh37 (hg19)	GRCh38 (hg38)
ZAR1L	13:32,877,837- 32,889,481	chr13:32,303,699- 32,315,363
ENST00000345108.6:c.931T>C	13:32,878,051	chr13:32,303,914

Converting coordinates between assemblies

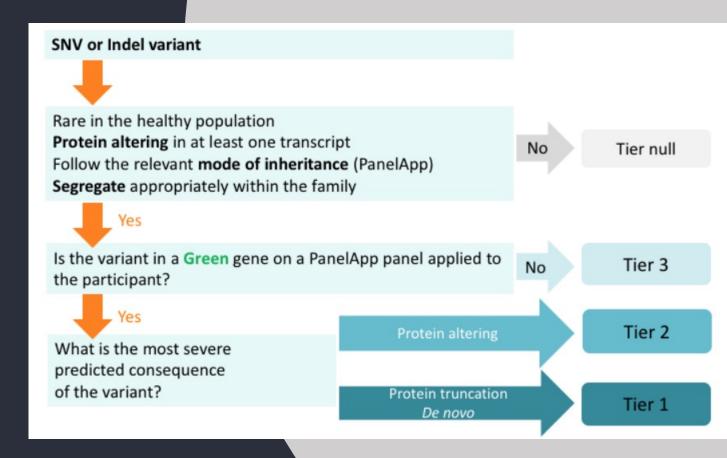

Inside the RE:

- Liftover tool on HPC
- Chain files in public_data_resources

Outside the RE:

https://www.ensembl.org/Homo_sapiens/Tools/Ass emblyConverter

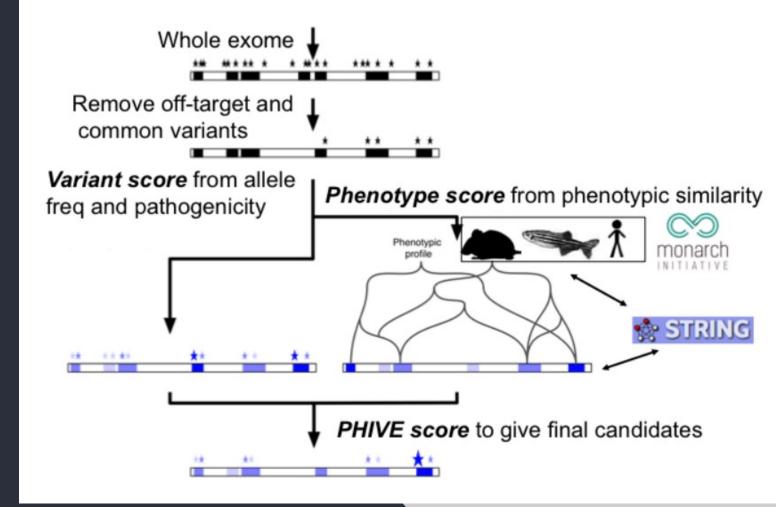
https://genome.ucsc.edu/cgibin/hgLiftOver


2. LabKey tables of variant genotypes

Labkey

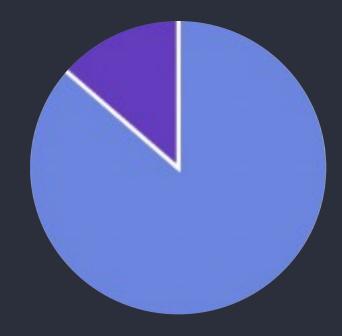
- Participant details and family relationships
- Sample details
- Genomic file locations
- Clinical data
- Bioinformatics analysis results
 - Tiering
 - Exomiser

Rare disease tiering



PanelApp

List 🛧	Entity	Reviews	Mode of Inheritance	Detalls	
Filter Entitles 7 Entitles					
Green	CIB1	2 reviews 2 green	BIALLELIC, autosomal or pseudoautosomal	Sources • Expert Review Green • London North GLH • NHS GMS Phenotypes • Epidermodysplasia verruciformis 3, 618267 Tags	
Green	TMC6	2 reviews 1 green	BIALLELIC, autosomal or pseudoautosomal	Sources	
Green	TMC8	2 reviews 1 green	BIALLELIC, autosomal or pseudoautosomal	Sources Expert Review Green London North GLH NHS GMS Phenotypes Epidermodysplasia verruciformis 2, 618231 Tags	
Amber	CORO1A	1 review	BIALLELIC, autosomal or pseudoautosomal	Sources • Expert Review Amber Tags	
Amber	IL7	1 review	BIALLELIC, autosomal or pseudoautosomal	Sources - Expert Review Amber Tags	
Amber	MST1	1 review	Not set	Sources • Expert Review Amber Tags	
Amber	RHOH	1 review	BIALLELIC, autosomal or pseudoautosomal	Sources • Expert Review Amber Tags	


Exomiser

Exomiser

Exomiser/tiering assembly

Rare disease

GRCh38 (aka hg38) GRCh37 (aka hg19)

Cancer

Somatic GRCh38
Germline GRCh38
Germline GRCh37
Somatic GRCh37

Exomiser/tiering assembly

chr13

ZAR1L ENST00000345108.6:c.931T>C

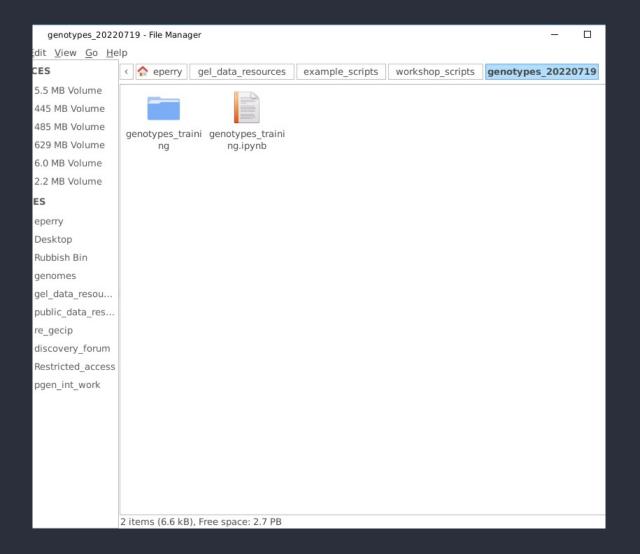
Search by	
gene	Should find all filter-passing variants in the gene on either assembly
coordinate(s)	You must also specify the genome assembly
HGVS (exomiser only)	Should find all filter-passing variants that match your string on either assembly

Demo: Variant data in LabKey

LabKey API

Labkey API allows you to:

- Combine data and filters from multiple tables
- Work in a variety of programming languages, but most support for Python and R
- Work both locally and on the HPC



Set up .netrc

- You can access the same data via the LabKey API as you can through other means
- You will need to configure access to the LabKey API with your username and password
 - In your home directory
 - On the HPC
- You do this by copying and editing a file called .netro

Materials

- Slides and video will be sent out to you after the session
- Scripts available in /gel_data_resources/example _scripts/workshop_scripts/gen otypes_20220719

Accessing the notebooks

Python

R

module load python/3.8.1
jupyter notebook --port
<four digit port number>

module load R/4.0.2 rstudio

Open link in browser

Demo: Variant data in LabKey API

3. Finding genotypes with IVA

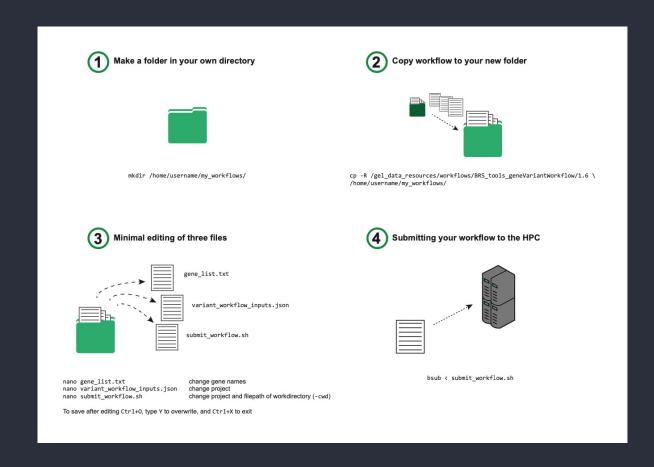

IVA Variant Browser

- Point-and-click interface to explore variants
- Filter by loci, consequences, population frequencies and inheritance.
- Find participant genotypes.

IVA genome assembly

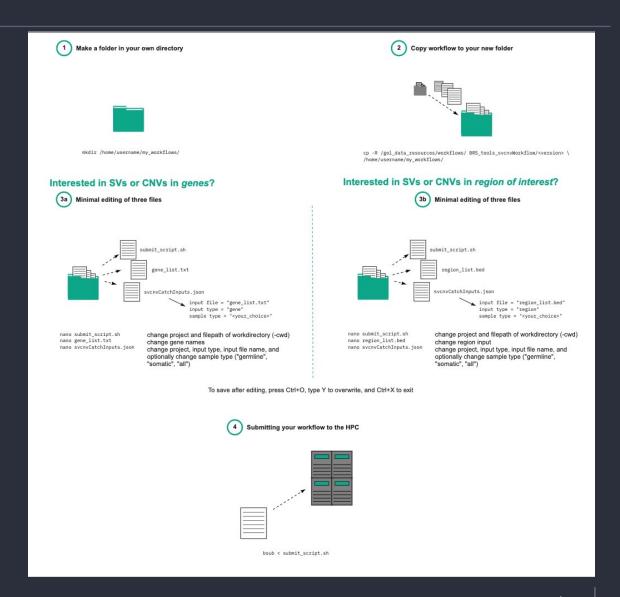
Rare disease

GRCh38 (aka hg38) GRCh37 (aka hg19) Cancer


Somatic GRCh38 Germline GRCh38 Germline GRCh37 Somatic GRCh37

Demo: Finding variants with IVA

4. The Gene-Variant and SV/CNV workflows


Gene-Variant workflow

- Submit a list of genes or regions
- Find all short variants in these genes/regions
- Get participants with these variants
- Choose somatic/germline, cancer/rare disease

SV-CNV workflow

- Submit a list of genes or regions
- Find all SVs/CNVs in these genes/regions
- Get participants with these variants
- Choose somatic/germline, cancer/rare disease

Benefits of using workflows

SV/CNV WORKFLOW IS THE ONLY WAY TO GET SV/CNVS ACROSS ALL PARTICIPANTS IN RE

BOTH WORKFLOWS QUERY
GENOMES ALIGNED TO
GRCH37 AND GRCH38

Workflows and genome assembly

coordinate(s)

chr13 ZAR1L ENST00000345108.6:c.931T>C

Search by

gene Should find all variants in the gene on either assembly

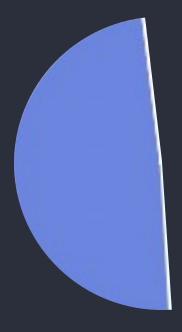
You must also specify the genome assembly

Demo: Running workflows on the HPC

5. Aggregated variant files

AggV2

- No genomes aligned to GRCh37
- Includes participants who have since withdrawn consent – see docs for how to remove


AggV2 assembly

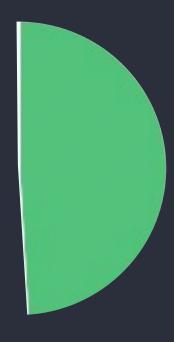
Rare disease

GRCh38 (aka hg38) GRCh37 (aka hg19)

Cancer

Somatic GRCh38
Germline GRCh38
Germline GRCh37
Somatic GRCh37

somAgg


- No genomes aligned to GRCh37
- Includes participants who have since withdrawn consent see docs for how to remove
- Feedback on somAgg

somAgg assembly

Rare disease

GRCh38 (aka hg38) GRCh37 (aka hg19)

Cancer

Somatic GRCh38
Germline GRCh38
Germline GRCh37
Somatic GRCh37

Aggregated files code books

- AggV2 and somAgg can be analysed with:
 - Bcftools
 - Split-vep
 - R/Python
 - Bedtools
- Code books available to take you through most common usecases:
 - AggV2 https://researchhelp.genomicsengland.co.uk/display/GERE/aggV2+Code+Book
 - somAgg https://researchhelp.genomicsengland.co.uk/display/GERE/somAgg%3A+Code+Book

Aggregated files chunks

Split into 1371 chunks

- Locus-based queries must query the correct chunk file
- BED file of chunks available
- Create a sorted list of your own regions
- Intersect with BEDtools
- Code books with more information
- Also available in Plink2 format

6. Using bcftools on the HPC

Demo: Using bcftools on the HPC

Summary and comparison of tools

Comparison – access type

Labkey tables: Tiering and Exomiser	Point-and-click access to tables plus API
IVA	Point-and-click
Gene-variant and SV/CNV workflows	Command line
Aggregated VCFs with bcftools	Command line

Comparison – search by

Labkey tables: Tiering and Exomiser	Gene, region or HGVS (Exomiser only)
IVA	Gene, region or rsID
Gene-variant and SV/CNV workflows	Gene or region
Aggregated VCFs with bcftools	Region

Comparison – variants available

Labkey tables: Tiering and Exomiser	Only variants that have passed tiering or exomiser filters
IVA	All variants
Gene-variant and SV/CNV workflows	All variants
Aggregated VCFs with bcftools	All variants present in GRCh38-aligned genomes from release 8 (AggV2) or 12 (somAgg)

Comparison – genome assembly

Labkey tables: Tiering and Exomiser	Variants on both assemblies in the table, with assembly as a column
IVA	Assemblies available as separate datasets
Gene-variant and SV/CNV workflows	By-gene searches both assemblies
Aggregated VCFs with bcftools	Only GRCh38

Comparison – underlying VCFs

Labkey tables: Tiering and Exomiser	Platypus
IVA	Platypus
Gene-variant and SV/CNV workflows	Strelka
Aggregated VCFs with bcftools	Strelka

Key takeaways

Use IVA for a fast overview

Pre-written workflows for gene-based searches

Aggregated VCFs have code-books for common usecases

Key takeaways

Use IVA for a fast overview

I Genome Assembly

Aggregated VCFs have code-books for common use-cases

7. Getting help and questions

Getting help

Check our documentation:

- https://research-help.genomicsengland.co.uk/
- Click on the documentation icon in the environment

Contact our Service Desk:

• ge-servicedesk@genomicsengland.co.uk

Questions

Your microphones are all muted

Use the Zoom Q&A to ask questions

Upvote your favourite questions: if we are short on time we will prioritise those with the most votes

Future sessions

Getting medical history for participants

22 Nov.

20 Sep.

Using the HPC to run jobs

Feedback

Thank you

