There are a huge number of tables that you can use to build rare disease cohorts. This tutorial will take you through some of the tables and give you some example scripts that you can use in python or R, or using R in an interactive session on CloudOS, to access the data.
The advantage of building cohorts programmatically is that the underlying tables are exposed, allowing you to verify the data in bulk. This also allows you to do very complex queries. You can save and tweak scripts to re-use in new releases or for similar queries.
Find staging and grading details. Since participants can have multiple tumours, double-check the diagnosis_date against the cancer_analysis.tumour_clinical_sample_time
Find staging, grading and hormone status. Since participants can have multiple tumours, double-check the diagnosis_date against the cancer_analysis.tumour_clinical_sample_time
Before you get started with using the LabKey APIs, you need to ensure you have it set up correctly, following this document. We recommend running your LabKey API scripts on the HPC, as detailed here, as they can be quite large.
Before you get started with using the LabKey APIs, you need to ensure you have it set up correctly, following this document. We recommend running your LabKey API scripts on the HPC, as detailed here, as they can be quite large.
To query our tables using CloudOS, you will need to set up an interactive session. You will need to use conda to install the required R packages:
LabKey has an underlying SQL database. To access it you will need to have the labkey module/library loaded. You will also be working with tables and dataframes. Here you can see the modules/libraries you should load in your scripts:
We have here a helper function called labkey_to_df that you can use to access the LabKey API in the RE and return data as a dataframe. You need to give it:
sql_query: an SQL query to access the LabKey tables
database: the version of the database you want to access for example /main-programme/main-programme_v18_2023-12-21
maxrows: maximum number of rows you want to return. This parameter defaults to 100000000, but if the output contains exactly the default value, then we suggest increasing this value.
Feel free to include this function in all your scripts and invoke it every time you want to query the data.
For cancer cohorts, the simplest way and main start point for building a cohort is to search by the recruited cancer type. This can be found in the cancer_analysis table.
The following code creates the required SQL query to find all participants in the cancer_analysis table with the disease_type listed as BREAST. Then, it runs the labkey_to_df function defined above to get a dataframe. In the code, we've defined the cancer type as an object, making it easy for you to change it to your cancer of interest.
type="BREAST"cancer_type=(f''' SELECT participant_id, disease_type, study_abbreviation FROM cancer_analysis WHERE disease_type='{type}' ''')cancer_query=labkey_to_df(cancer_type,version,1000000)
The following code creates the required SQL query to find all participants in the cancer_analysis table with the clinical_indication_full_name including the word Breast. Then, it runs the labkey_to_df function defined above to get a dataframe. In the code, we've defined the cancer type as an object, making it easy for you to change it to your cancer of interest.
type<-"Breast"gms_cancer_type<-paste("SELECT participant_id, clinical_indication_full_name, tumour_uid FROM cancer_analysis WHERE clinical_indication_full_name LIKE'%",type,"%'",sep="")gms_cancer_query<-labkey_to_df(gms_cancer_type,gms_version,10000)
type="Breast"gms_cancer_type=(f''' SELECT participant_id, clinical_indication_full_name, tumour_uid FROM cancer_analysis WHERE clinical_indication_full_name LIKE '%{type}%' ''')gms_cancer_query=labkey_to_df(gms_cancer_type,gms_version,10000)
This query will not get you all participants who have had breast cancer, since some participants may have had multiple cancers in their lifetimes. It also may not be 100% accurate due to flaws in the way the data was curated into the database.
We recommend that you check any recruited cancer against the diagnosis codes in the participants' health records.
The diagnosis codes are found in the hes tables:
hes_apc: Admitted patient care
hes_op: Outpatients
hes_ae: Accident and emergency
These tables all contain columns named diag_all, which contains ICD10 codes for the diagnoses the participant received on these hospital visits. You can find all relevant ICD10 codes for your disease of interest on the WHO ICD website.
Here's an example of how you can search for a code for breast cancer, checking against all the hes tables which have been pre-filtered using a list of participant IDs named participant (perhaps the participant IDs from the previous query).
hes_tables<-c("apc","op","ae")icd_code<-"C50"concatenated<-c()for (hes_tableinhes_tables){sqlstr<-paste("SELECT participant_id ","FROM hes_",hes_table," WHERE participant_id IN (",participant,")"," AND diag_all LIKE '%",icd_code,"%'",sep="")filtered_participants<-labkey_to_df(sqlstr,version,100000)if (nrow(filtered_participants)>0){concatenated<-append(concatenated,filtered_participants$participant_id)}}new_participants<-unique(concatenated)
hes_tables=["apc","op","ae"]icd_code='C50'concatenated=[]forhes_tableinhes_tables:sqlstr=(f''' SELECT participant_id FROM hes_{hes_table} WHERE participant_id IN {*participant,} AND diag_all LIKE '%{icd_code}%' ''')filtered_participants=labkey_to_df(sqlstr,version,100000)ifnotfiltered_participants.empty:concatenated+=list(filtered_participants['participant_id'])new_participants=np.unique(concatenated)
hes_tables<-c("apc","op","ae")icd_code<-"C50"concatenated<-c()for (hes_tableinhes_tables){sqlstr<-paste("SELECT participant_id ","FROM hes_",hes_table," WHERE participant_id IN (",participant,")"," AND diag_all LIKE '%",icd_code,"%'",sep="")filtered_participants<-labkey_to_df(sqlstr,version,100000)if (nrow(filtered_participants)>0){concatenated<-append(concatenated,filtered_participants$participant_id)}}new_participants<-unique(concatenated)
Longitudinal medical history is not available for NHS GMS.
The data from the National Cancer Registration and Analysis Service (NCRAS) contains information on hormonal status, stage and diagnosis dates. We can find these data in the av_tumour table.
Some participants have multiple tumour samples sequenced. It is good practice to match diagnosisdatebest from av_tumour with tumour_clinicial_sample_time from cancer_analysis when merging data.
staging_sql<-paste("SELECT ca.participant_id, ca.tumour_sample_platekey, ca.disease_type, ca.tumour_clinical_sample_time, csc.diagnosis_date, csc.grade, csc.component_tnm_t, csc.component_tnm_n, csc.component_tnm_m, csc.ajcc_stage, csc.dukes, csc.figo, csc.gleason_primary, csc.gleason_combined FROM cancer_analysis ca INNER JOIN cancer_staging_consolidated csc ON ca.participant_id = csc.participant_id AND csc.diagnosis_date = ( SELECT MAX(csc_e.diagnosis_date) FROM cancer_staging_consolidated csc_e WHERE csc_e.participant_id = csc.participant_id AND ca.tumour_clinical_sample_time >= csc_e.diagnosis_date ) WHERE ca.participant_id IN (",participant,")",sep="")staging_query<-labkey_to_df(staging_sql,version,100000)
This query works if the list of participant IDs is quite short, however there is a limit on the size of an SQL string. If you have a large number of IDs, this query may fail; we recommend fetching the whole table without filtering then subsetting the table afterwards.
We can also assess oestrogen receptor (ER), progesterone receptor (PR), and HER2 status of our breast cancer samples.
The following SQL query fetches data from the av_tumour table, matching to the cancer_analysis table by the participant_id, filtering by a list of participant IDs called participant.
hormone_sql<-paste("SELECT ca.participant_id, ca.tumour_sample_platekey, ca.disease_type, av.anon_tumour_id, av.er_status, av.pr_status, av.her2_status FROM cancer_analysis ca INNER JOIN av_tumour av ON ca.participant_id = av.participant_id WHERE ca.participant_id IN (",bc_participant,")",sep="")hormone_query<-labkey_to_df(hormone_sql,version,100000)
hormone_sql=(f''' SELECT ca.participant_id, ca.tumour_sample_platekey, ca.disease_type, av.anon_tumour_id, av.er_status, av.pr_status, av.her2_status FROM cancer_analysis ca INNER JOIN av_tumour av ON ca.participant_id = av.participant_id WHERE ca.participant_id IN {*bc_participant,} ''')hormone_query=labkey_to_df(hormone_sql,version,100000)
hormone_sql<-paste("SELECT ca.participant_id, ca.tumour_sample_platekey, ca.disease_type, av.tumour_pseudo_id, av.er_status, av.pr_status, av.her2_status FROM cancer_analysis ca INNER JOIN av_tumour av ON ca.participant_id = av.participant_id WHERE ca.participant_id IN (",bc_participant,")",sep="")hormone_query<-labkey_to_df(hormone_sql,version,100000)
metastases_sql<-paste("SELECT participant_id, metastatic_site FROM cancer_participant_tumour_metastatic_site WHERE participant_id IN (",bc_participant,")",sep="")metastases_query<-labkey_to_df(metastases_sql,version,100000)
metastases_sql=(f''' SELECT participant_id, metastatic_site FROM cancer_participant_tumour_metastatic_site WHERE participant_id IN {*bc_participant,} ''')metastases_query=labkey_to_df(metastases_sql,version,100000)
metastases_sql<-paste("SELECT participant_id, metastatic_site FROM cancer_participant_tumour_metastatic_site WHERE participant_id IN (",bc_participant,")",sep="")metastases_query<-labkey_to_df(metastases_sql,version,100000)
This is unlikely to find all the participants whose tumours have metastasised as the cancer_participant_tumour_metastatic_site table is not complete. You can supplement this query by looking for ICD-10 codes for metastases in the hospital episode statistics tables, or looking at the cancer_registry table. Extra care is needed to differentiate between metastasis, new primary tumours or recurrence of the primary tumour.
The query below searches the hes_* tables for ICD-10 codes associated with metastasis: C76-C80. It then concatenates these into a single table.
meta_codes<-c('C76','C77','C78','C79','C80')hes_tables<-c("apc","op","ae")meta_concat<-data.frame()diag_statement<-paste(meta_codes,collapse="%' OR diag_all LIKE '%")for (hes_tableinhes_tables){sqlstr<-paste("SELECT participant_id, diag_all ","FROM hes_",hes_table," WHERE participant_id IN (",bc_participant,")"," AND diag_all LIKE '%",diag_statement,"%'",sep="")meta_hes<-labkey_to_df(sqlstr,version,1000000)if (nrow(meta_hes)>0){meta_concat<-rbind(meta_concat,meta_hes)}}
meta_codes=['C76','C77','C78','C79','C80']hes_tables=["apc","op","ae"]meta_concat=pd.DataFrame()diag_statement="%' OR diag_all LIKE '%".join(meta_codes)forhes_tableinhes_tables:sqlstr=(f''' SELECT participant_id, diag_all FROM hes_{hes_table} WHERE participant_id IN {*bc_participant,} AND diag_all LIKE '%{diag_statement}%' ''')meta_hes=labkey_to_df(sqlstr,version,1000000)ifnotmeta_hes.empty:meta_concat=pd.concat([meta_hes,meta_concat])
meta_codes<-c('C76','C77','C78','C79','C80')hes_tables<-c("apc","op","ae")meta_concat<-data.frame()diag_statement<-paste(meta_codes,collapse="%' OR diag_all LIKE '%")for (hes_tableinhes_tables){sqlstr<-paste("SELECT participant_id, diag_all ","FROM hes_",hes_table," WHERE participant_id IN (",bc_participant,")"," AND diag_all LIKE '%",diag_statement,"%'",sep="")meta_hes<-labkey_to_df(sqlstr,version)if (nrow(meta_hes)>0){meta_concat<-rbind(meta_concat,meta_hes)}}
Similarly, we can search the cancer_site column of cancer_registry for the same ICD-10 codes.
site_statement<-paste(meta_codes,collapse="%' OR cancer_site LIKE '%")reg_sql<-paste("SELECT participant_id, cancer_site ","FROM cancer_registry WHERE participant_id IN (",bc_participant,")"," AND cancer_site LIKE '%",site_statement,"%'",sep="")reg_query<-labkey_to_df(reg_sql,version,100000)
site_statement="%' OR cancer_site LIKE '%".join(meta_codes)reg_sql=(f''' SELECT participant_id, cancer_site FROM cancer_registry WHERE participant_id IN {*bc_participant,} AND cancer_site LIKE '%{site_statement}%' ''')reg_query=labkey_to_df(reg_sql,version,100000)
site_statement<-paste(meta_codes,collapse="%' OR cancer_site LIKE '%")reg_sql<-paste("SELECT participant_id, cancer_site ","FROM cancer_register_nhsd WHERE participant_id IN (",bc_participant,")"," AND cancer_site LIKE '%",site_statement,"%'",sep="")reg_query<-labkey_to_df(reg_sql,version,100000)
We can find the grading and stage of cancers in the av_tumour table. We can also assess oestrogen receptor (ER), progesterone receptor (PR), and HER2 status of our breast cancer samples.
The following SQL query fetches data from the av_tumour table, matching to the cancer_analysis table by the participant_id, filtering by a list of participant IDs called participant.
gms_staging_sql<-paste("SELECT ca.participant_id, ca.tumour_sample_platekey, ca.clinical_indication_full_name, ca.tumour_sample_clinical_sample_date_time, at.anon_tumour_id, at.er_status, at.pr_status, at.her2_status, at.diagnosisdatebest, at.grade, at.t_best, at.n_best, at.m_best FROM cancer_analysis ca INNER JOIN av_tumour at ON ca.participant_id = at.participant_id AND at.diagnosisdatebest = ( SELECT MAX(ate.diagnosisdatebest) FROM av_tumour ate WHERE ate.participant_id = at.participant_id AND ca.tumour_sample_clinical_sample_date_time >= ate.diagnosisdatebest ) WHERE ca.participant_id IN ('",paste(gms_list,collapse="', '"),"')",sep="")gms_staging_query<-labkey_to_df(gms_staging_sql,gms_version,100000)
gms_staging_sql=(f''' SELECT ca.participant_id, ca.tumour_sample_platekey, ca.clinical_indication_full_name, ca.tumour_sample_clinical_sample_date_time, at.anon_tumour_id, at.er_status, at.pr_status, at.her2_status, at.diagnosisdatebest, at.grade, at.t_best, at.n_best, at.m_best FROM cancer_analysis ca INNER JOIN av_tumour at ON ca.participant_id = at.participant_id AND at.diagnosisdatebest = ( SELECT MAX(ate.diagnosisdatebest) FROM av_tumour ate WHERE ate.participant_id = at.participant_id AND ca.tumour_sample_clinical_sample_date_time >= ate.diagnosisdatebest ) WHERE ca.participant_id IN {*participant,} ''')gms_staging_query=labkey_to_df(gms_staging_sql,gms_version,100000)
NHSE's systemic anti-cancer therapy (sact) contains clinical management on patients receiving cancer chemotherapy, and newer agents that have anti-cancer effects, in or funded by the NHS in England.
sact is in a long format, with participants occuring in multiple rows, each capturing one regimen of treatment.
Therapies can be captured in both the drug_group and analysis_group as part of multi-drug regimens.
The following function checks SACT table for the drug specified.
sact_drug_finder<-function(drug.names,treat.df){# checks SACT table for presence of particular drugs in both the# drug_group as well as the analysis_group columns# Args:# drug.names = character vector of drug names (str)# treat.df = Data frame containing a treatment table# Returns:# Data frame of treatment table with rows containing the drug of interest.require(tidyverse)all.drugs<-drug.names%>%toupper()%>%unique()%>%paste(collapse="|")# Treatment tables use redundant terminologydrug.cols<-c("analysis_group","drug_group","regimenname","drugname","eventdesc")## Identify columns of the current tabletable.drug.cols<-intersect(colnames(treat.df),drug.cols)treat.df%>%pivot_longer(all_of(table.drug.cols),names_to="drug_source",values_to="drug")%>%filter(!is.na(drug))%>%filter(str_detect(drug,all.drugs))%>%distinct()%>%pivot_wider(names_from="drug_source",values_from="drug")}
defsact_drug_finder(drugname,df):"""checks SACT table for presence of particular drugs in both the drug_group as well as the analysis_group columns Args: drugname (list): list of drug names (str) df (DataFrame): Pandas dataframe of SACT table. Returns: Dataframe of sact with rows containing the drug of interest. columns d1 to d5 have been added to split up drugs in 'analysis_group', column d0 contains the drug noted in 'drug_group'. """drugname_u=list(map(str.upper,drugname))newd=df['analysis_group'].str.count('\+').max()# +1 for range end, +1 because number of '+' != number of columns.newcols=['d'+str(x)forxinrange(1,newd+2)]df[newcols]=df['analysis_group'].str.split('+',expand=True)df[newcols]=df[newcols].apply(lambdax:x.str.strip())df['d0']=df['drug_group']ncol=sum(df.columns.str.contains('^d[0-newd+1]+'))cols_select=['participant_id']+list(df.columns[df.columns.str.contains('^d[0-newd+1]+')])sact_diag=df[[cforcindf.columnsifcincols_select]]mask=functools.reduce(np.logical_or,[sact_diag['d'+'%.1d'%i].str.contains('|'.join(drugname_u),na=False)foriinrange(0,ncol)])returndf.iloc[sact_diag[mask].index].reset_index()
sact_drug_finder<-function(drug.names,treat.df){# checks SACT table for presence of particular drugs in both the# drug_group as well as the analysis_group columns# Args:# drug.names = character vector of drug names (str)# treat.df = Data frame containing a treatment table# Returns:# Data frame of treatment table with rows containing the drug of interest.require(tidyverse)all.drugs<-drug.names%>%toupper()%>%unique()%>%paste(collapse="|")# Treatment tables use redundant terminologydrug.cols<-c("analysis_group","drug_group","regimenname","drugname","eventdesc")## Identify columns of the current tabletable.drug.cols<-intersect(colnames(treat.df),drug.cols)treat.df%>%pivot_longer(all_of(table.drug.cols),names_to="drug_source",values_to="drug")%>%filter(!is.na(drug))%>%filter(str_detect(drug,all.drugs))%>%distinct()%>%pivot_wider(names_from="drug_source",values_from="drug")}
We can query the sact table with a list of anon_tumour_ids, we've called the list tumour_ids in this query.
We're now going to find particpants who had anti-cancer radiotherapy on their primary tumour. To do this we're filtering the rtds table by radiotherapyintent1,and rttreatmentregionP.
intent="1"region="P"rtds_sql=(f''' SELECT participant_id, apptdate, radiotherapyintent, rttreatmentregion, rtactualdose, radiotherapybeamtype, radiotherapybeamenergy FROM rtds WHERE participant_id IN {*participant,} AND radiotherapyintent = '{intent}' AND rttreatmentregion = '{region}' ''')rtds_query=labkey_to_df(rtds_sql,version,100000)
gms_rtds_sql<-paste("SELECT participant_id, apptdate, radiotherapyintent, rttreatmentregion, rtactualdose, radiotherapybeamtype, radiotherapybeamenergy FROM rtds WHERE participant_id IN ('",paste(participant,collapse="', '"),"') AND radiotherapyintent = ",intent," AND rttreatmentregion = '",region,"'",sep="")gms_rtds_query<-labkey_to_df(gms_rtds_sql,gms_version,100000)
intent="1"region="P"gms_rtds_sql=(f''' SELECT participant_id, apptdate, radiotherapyintent, rttreatmentregion, rtactualdose, radiotherapybeamtype, radiotherapybeamenergy FROM rtds WHERE participant_id IN {*participant,} AND radiotherapyintent = '{intent}' AND rttreatmentregion = '{region}' ''')gms_rtds_query=labkey_to_df(gms_rtds_sql,gms_version,100000)
treatment<-"Surgery - curative"surgery_sql<-paste("SELECT participant_id, eventdesc, opcs4_code, opcs4_name FROM av_treatment WHERE participant_id IN (",participant,") AND eventdesc = '",treatment,"'",sep="")surgery_query<-labkey_to_df(surgery_sql,version,100000)
treatment="Surgery - curative"surgery_sql=(f''' SELECT participant_id, eventdesc, opcs4_code, opcs4_name FROM av_treatment WHERE participant_id IN {*participant,} AND eventdesc = '{treatment}' ''')surgery_query=labkey_to_df(surgery_sql,version,100000)
treatment<-"Surgery - curative"surgery_sql<-paste("SELECT participant_id, eventdesc, opcs4_code, opcs4_name FROM av_treatment WHERE participant_id IN (",participant,") AND eventdesc = '",treatment,"'",sep="")surgery_query<-labkey_to_df(surgery_sql,version,100000)
treatment<-"Surgery - curative"gms_surgery_sql<-paste("SELECT participant_id, eventdesc, opcs4_code, opcs4_name FROM av_treatment WHERE participant_id IN ('",paste(participant,collapse="', '"),"') AND eventdesc = '",treatment,"'",sep="")gms_surgery_query<-labkey_to_df(gms_surgery_sql,gms_version,100000)
treatment="Surgery - curative"gms_surgery_sql=(f''' SELECT participant_id, eventdesc, opcs4_code, opcs4_name FROM av_treatment WHERE participant_id IN {*participant,} AND eventdesc = '{treatment}' ''')gms_surgery_query=labkey_to_df(gms_surgery_sql,gms_version,100000)gms_surgery_query
We're now going to fetch some general details about the participants that you might use to filter participants by demographics, looking at deprivation, ethnicity and risk factors.
In the following query, we will fetch deprivation index data for our breast cancer list. We will also get ethnicity, both self-declared ethnicity (participant_ethnic_category) and genetically inferred ethnicity (genetically_inferred_ancestry_thr). The former is useful, along with the deprivation index, to look at societal effects on cancer. The latter is useful for looking at links between cancer and genetic ancestry.
demographics_sql<-paste("SELECT p.participant_id, p.participant_ethnic_category, ps.genetically_inferred_ancestry_thr, imd.imd FROM participant as p, participant_summary as ps, av_imd as imd WHERE p.participant_id = ps.participant_id AND p.participant_id = imd.participant_id AND p.participant_id IN (",participant,")",sep="")demographics_query<-labkey_to_df(demographics_sql,version,10000)
demographics_sql=(f''' SELECT p.participant_id, p.participant_ethnic_category, ps.genetically_inferred_ancestry_thr, imd.imd FROM participant as p, participant_summary as ps, av_imd as imd WHERE p.participant_id = ps.participant_id AND p.participant_id = imd.participant_id AND p.participant_id IN {*participant,} ''')demographics_query=labkey_to_df(demographics_sql,version,10000)
demographics_sql<-paste("SELECT p.participant_id, p.participant_ethnic_category, ps.genetically_inferred_ancestry_thr, imd.quintile_2015 FROM participant as p, key_columns as ps, av_imd as imd WHERE p.participant_id = ps.participant_id AND p.participant_id = imd.participant_id AND p.participant_id IN (",participant,")",sep="")demographics_query<-labkey_to_df(demographics_sql,version,100000)
General risk factors, including height, weight, alcohol consumption and smoking, are in the cancer_risk_factor_general table, whereas risk factors specific to certain cancers are in cancer_risk_factor_cancer_specific, segrated into cancer_type. In the query below we will pull out participants from our participant list who currently smoke.
smoking<-"Current smoker"smoking_sql<-paste("SELECT participant_id FROM cancer_risk_factor_general WHERE participant_id IN (",participant,") AND smoking_status ='",smoking,"'",sep="")smoking_query<-labkey_to_df(smoking_sql,version,10000)
smoking="Current smoker"smoking_sql=(f''' SELECT participant_id FROM cancer_risk_factor_general WHERE participant_id IN {*participant,} AND smoking_status ='{smoking}' ''')smoking_query=labkey_to_df(smoking_sql,version,10000)
smoking<-"Current smoker"smoking_sql<-paste("SELECT participant_id FROM cancer_risk_factor_general WHERE participant_id IN (",participant,") AND smoking_status ='",smoking,"'",sep="")smoking_query<-labkey_to_df(smoking_sql,version,100000)
In the next query we will pull out a number of breast cancer risk factors for our list.
bc_risk_sql<-paste("SELECT participant_id, age_of_menarche, age_of_menopause, number_of_pregnancies FROM cancer_risk_factor_cancer_specific WHERE participant_id IN (",participant,")",sep="")bc_risk_query<-labkey_to_df(bc_risk_sql,version,10000)
bc_risk_sql=(f''' SELECT participant_id, age_of_menarche, age_of_menopause, number_of_pregnancies FROM cancer_risk_factor_cancer_specific WHERE participant_id IN {*participant,} ''')bc_risk_query=labkey_to_df(bc_risk_sql,version,10000)
bc_risk_sql<-paste("SELECT participant_id, age_of_menarche, age_of_menopause, number_of_pregnancies FROM cancer_risk_factor_cancer_specific WHERE participant_id IN (",participant,")",sep="")bc_risk_query<-labkey_to_df(bc_risk_sql,version,100000)
gms_demographics_sql<-paste("SELECT p.participant_id, p.ethnicity_description, imd.imd FROM participant as p, av_imd as imd WHERE p.participant_id = imd.participant_id AND p.participant_id IN ('",paste(participant,collapse="', '"),"')",sep="")gms_demographics_query<-labkey_to_df(gms_demographics_sql,gms_version,10000)
gms_demographics_sql=(f''' SELECT p.participant_id, p.ethnicity_description, imd.imd FROM participant as p, av_imd as imd WHERE p.participant_id = imd.participant_id AND p.participant_id IN {*participant,} ''')gms_demographics_query=labkey_to_df(gms_demographics_sql,gms_version,10000)
We don’t have Age stored. You need to calculate it from the year of birth. Age will always be an approximation, since we only have year and not full date: this is particularly important for anything in small children.
We're going to find different ages for our list of participants, starting with current age:
current_age_sql<-paste("SELECT participant_id, (YEAR(CURDATE()) - yob) as current_age FROM participant_summary WHERE participant_id IN (",participant,")",sep="")current_age_query<-labkey_to_df(current_age_sql,version,10000)
current_age_sql=(f''' SELECT participant_id, (YEAR(CURDATE()) - yob) as current_age FROM participant_summary WHERE participant_id IN {*participant,} ''')current_age_query=labkey_to_df(current_age_sql,version,10000)
current_age_sql<-paste("SELECT participant_id, (YEAR(CURDATE()) - yob) as current_age FROM key_columns WHERE participant_id IN (",participant,")",sep="")current_age_query<-labkey_to_df(current_age_sql,version,100000)
gms_current_age_sql<-paste("SELECT participant_id, (YEAR(CURDATE()) - participant_year_of_birth) as current_age FROM participant WHERE participant_id IN ('",paste(participant,collapse="', '"),"')",sep="")gms_current_age_query<-labkey_to_df(gms_current_age_sql,gms_version,10000)
gms_current_age_sql=(f''' SELECT participant_id, (YEAR(CURDATE()) - participant_year_of_birth) as current_age FROM participant WHERE participant_id IN {*participant,} ''')gms_current_age_query=labkey_to_df(gms_current_age_sql,gms_version,10000)
To get the date when the sample was taken, you need to get the year from clinic_sample.
sample_age_sql<-paste("SELECT ps.participant_id, cs.clinic_sample_id, (YEAR (cs.clinic_sample_datetime) - ps.yob) as sample_age FROM participant_summary as ps JOIN clinic_sample as cs ON ps.participant_id = cs.participant_id WHERE ps.participant_id IN (",participant,")",sep="")sample_age_query<-labkey_to_df(sample_age_sql,version,10000)
sample_age_sql=(f''' SELECT ps.participant_id, cs.clinic_sample_id, (YEAR (cs.clinic_sample_datetime) - ps.yob) as sample_age FROM participant_summary as ps JOIN clinic_sample as cs ON ps.participant_id = cs.participant_id WHERE ps.participant_id IN {*participant,} ''')sample_age_query=labkey_to_df(sample_age_sql,version,10000)sample_age_query
sample_age_sql<-paste("SELECT ps.participant_id, cs.clinic_sample_id, (YEAR (cs.clinic_sample_datetime) - ps.yob) as sample_age FROM key_columns as ps JOIN clinic_sample as cs ON ps.participant_id = cs.participant_id WHERE ps.participant_id IN (",participant,")",sep="")sample_age_query<-labkey_to_df(sample_age_sql,version,100000)
gms_sample_age_sql<-paste("SELECT p.participant_id, ca.tumour_sample_clinical_sample_date_time, (YEAR (ca.tumour_sample_clinical_sample_date_time) - p.participant_year_of_birth) as sample_age FROM participant as p JOIN cancer_analysis as ca ON p.participant_id = ca.participant_id WHERE p.participant_id IN ('",paste(participant,collapse="', '"),"')",sep="")gms_sample_age_query<-labkey_to_df(gms_sample_age_sql,gms_version,10000)
gms_sample_age_sql=(f'''SELECT p.participant_id, ca.tumour_sample_clinical_sample_date_time, (YEAR (ca.tumour_sample_clinical_sample_date_time) - p.participant_year_of_birth) as sample_age FROM participant as p JOIN cancer_analysis as ca ON p.participant_id = ca.participant_id WHERE p.participant_id IN {*participant,} ''')gms_sample_age_query=labkey_to_df(gms_sample_age_sql,gms_version,10000)
You can get age at diagnosis from the cancer tables. This can sometimes be tricky as some records can be incomplete.
In this example, we're going to find a diagnosis date from the cancer_participant_tumour, av_tumour and cancer_register tables by finding the oldest record with the diagnosis code we're interested in out of all those tables.
cpt_sql<-paste("SELECT DISTINCT participant_id, YEAR(diagnosis_date) as diagnosis_date, diagnosis_icd_code as icd10_code FROM cancer_participant_tumour WHERE participant_id IN (",participant,") AND diagnosis_icd_code like '%",icd_code,"%'",sep="")cpt_query=labkey_to_df(cpt_sql,version,100000)av_sql<-paste("SELECT DISTINCT participant_id, YEAR(diagnosisdatebest) as diagnosis_date, site_icd10_o2 as icd10_code FROM av_tumour WHERE participant_id IN (",participant,") AND site_icd10_o2 like '%",icd_code,"%'",sep="")av_query=labkey_to_df(av_sql,version,100000)cr_sql<-paste("SELECT DISTINCT participant_id, YEAR(event_date) as diagnosis_date, cancer_site as icd10_code FROM cancer_registry WHERE participant_id IN (",participant,") AND cancer_site like '%",icd_code,"%'",sep="")cr_query=labkey_to_df(cr_sql,version,100000)diagnosis_concat<-rbind(cpt_query,av_query,cr_query)aggregate(diagnosis_concat$diagnosis_date,by=list(diagnosis_concat$participant_id,diagnosis_concat$icd10_code),min)yob_sql<-paste("SELECT participant_id, yob FROM participant_summary WHERE participant_id IN (",participant,")",sep="")yob_query<-labkey_to_df(yob_sql,version,100000)diag_age_table<-merge(yob_query,diagnosis_concat)diag_age_table$diag_age<-as.numeric(diag_age_table$diagnosis_date)-as.numeric(diag_age_table$yob)
cpt_sql=(f''' SELECT DISTINCT participant_id, YEAR(diagnosis_date) as "diagnosis_date", diagnosis_icd_code as "icd10_code" FROM cancer_participant_tumour WHERE participant_id IN {*participant,} AND diagnosis_icd_code like '%{icd_code}%' ''')cpt_query=labkey_to_df(cpt_sql,version,100000)av_sql=(f''' SELECT DISTINCT participant_id, YEAR(diagnosisdatebest) as "diagnosis_date", site_icd10_o2 as "icd10_code" FROM av_tumour WHERE participant_id IN {*participant,} AND site_icd10_o2 like '%{icd_code}%' ''')av_query=labkey_to_df(av_sql,version,100000)cr_sql=(f''' SELECT DISTINCT participant_id, YEAR(event_date) as "diagnosis_date", cancer_site as "icd10_code" FROM cancer_registry WHERE participant_id IN {*participant,} AND cancer_site like '%{icd_code}%' ''')cr_query=labkey_to_df(cr_sql,version,100000)diagnosis_concat=pd.concat([cpt_query,av_query,cr_query])diagnosis_concat.sort_values(['diagnosis_date'],ascending=True,inplace=True)diagnosis_concat.drop_duplicates(['participant_id','icd10_code'],keep='first',inplace=True)yob_sql=(f''' SELECT participant_id, yob FROM participant_summary WHERE participant_id IN {*participant,} ''')yob_query=labkey_to_df(yob_sql,version,100000)diag_age_table=pd.merge(yob_query,diagnosis_concat)diag_age_table['diag_age']=diag_age_table['diagnosis_date']-diag_age_table['yob']
cpt_sql<-paste("SELECT DISTINCT participant_id, YEAR(diagnosis_date) as diagnosis_date, diagnosis_icd_code as icd10_code FROM cancer_participant_tumour WHERE participant_id IN (",participant,") AND diagnosis_icd_code like '%",icd_code,"%'",sep="")cpt_query=labkey_to_df(cpt_sql,version,100000)av_sql<-paste("SELECT DISTINCT participant_id, YEAR(diagnosisdatebest) as diagnosis_date, site_icd10_o2 as icd10_code FROM av_tumour WHERE participant_id IN (",participant,") AND site_icd10_o2 like '%",icd_code,"%'",sep="")av_query=labkey_to_df(av_sql,version,100000)cr_sql<-paste("SELECT DISTINCT participant_id, YEAR(event_date) as diagnosis_date, cancer_site as icd10_code FROM cancer_registry WHERE participant_id IN (",participant,") AND cancer_site like '%",icd_code,"%'",sep="")cr_query=labkey_to_df(cr_sql,version,100000)diagnosis_concat<-rbind(cpt_query,av_query,cr_query)aggregate(diagnosis_concat$diagnosis_date,by=list(diagnosis_concat$participant_id,diagnosis_concat$icd10_code),min)yob_sql<-paste("SELECT participant_id, yob FROM key_columns WHERE participant_id IN (",participant,")",sep="")yob_query<-labkey_to_df(yob_sql,version,100000)diag_age_table<-merge(yob_query,diagnosis_concat)diag_age_table$diag_age<-as.numeric(diag_age_table$diagnosis_date)-as.numeric(diag_age_table$yob)
Age at death can be easily calculated from the participant_summary table:
death_sql<-paste("SELECT participant_id, yob, death_date, (YEAR (death_date) - yob) as death_age FROM participant_summary WHERE participant_id IN (",participant,")",sep="")death_query<-labkey_to_df(death_sql,version,100000)
death_sql=(f''' SELECT participant_id, yob, death_date, (YEAR (death_date) - yob) as death_age FROM participant_summary WHERE participant_id IN {*participant,} ''')death_query=labkey_to_df(death_sql,version,100000)
death_sql<-paste("SELECT participant_id, yob, death_date, (YEAR (death_date) - yob) as death_age FROM key_columns WHERE participant_id IN (",participant,")",sep="")death_query<-labkey_to_df(death_sql,version,100000)
In this example, we're going to find a diagnosis date from the tumour and av_tumour tables by finding the oldest record with the diagnosis code we're interested in out of all those tables.
tumour_id_list<-as.list(gms_cancer_query$tumour_uid)gms_t_sql<-paste("SELECT DISTINCT participant_id, tumour_diagnosis_year as diagnosis_date FROM tumour WHERE uid IN ('",paste(tumour_id_list,collapse="', '"),"')",sep="")gms_t_query=labkey_to_df(gms_t_sql,gms_version,100000)gms_av_sql<-paste("SELECT DISTINCT participant_id, YEAR(diagnosisdatebest) as diagnosis_date FROM av_tumour WHERE participant_id IN ('",paste(gms_list,collapse="', '"),"')",sep="")gms_av_query=labkey_to_df(gms_av_sql,gms_version,100000)gms_diagnosis_concat<-rbind(gms_t_query,gms_av_query)aggregate(gms_diagnosis_concat$diagnosis_date,by=list(gms_diagnosis_concat$participant_id),min)gms_yob_sql<-paste("SELECT participant_id, participant_year_of_birth FROM participant WHERE participant_id IN ('",paste(gms_list,collapse="', '"),"')",sep="")gms_yob_query<-labkey_to_df(gms_yob_sql,gms_version,100000)gms_diag_age_table<-merge(gms_yob_query,gms_diagnosis_concat)gms_diag_age_table$diag_age<-as.numeric(gms_diag_age_table$diagnosis_date)-as.numeric(gms_diag_age_table$participant_year_of_birth)
tumour_id_list=gms_cancer_query['tumour_uid'].tolist()gms_t_sql=(f''' SELECT DISTINCT participant_id, tumour_diagnosis_year as "diagnosis_date" FROM tumour WHERE uid IN {*tumour_id_list,} ''')gms_t_query=labkey_to_df(gms_t_sql,gms_version,100000)gms_av_sql=(f''' SELECT DISTINCT participant_id, YEAR(diagnosisdatebest) as "diagnosis_date", FROM av_tumour WHERE participant_id IN {*gms_list,} ''')gms_av_query=labkey_to_df(gms_av_sql,gms_version,100000)gms_diagnosis_concat=pd.concat([gms_t_query,gms_av_query])gms_diagnosis_concat.sort_values(['diagnosis_date'],ascending=True,inplace=True)gms_diagnosis_concat.drop_duplicates(['participant_id'],keep='first',inplace=True)gms_yob_sql=(f''' SELECT participant_id, participant_year_of_birth FROM participant WHERE participant_id IN {*gms_list,} ''')gms_yob_query=labkey_to_df(gms_yob_sql,gms_version,100000)gms_diag_age_table=pd.merge(gms_yob_query,gms_diagnosis_concat)gms_diag_age_table['diag_age']=gms_diag_age_table['diagnosis_date']-gms_diag_age_table['participant_year_of_birth']
You must filter participants in your analysis to ensure they all have active consent for research. To do this, use the programme_consent_status column of the participant table in the 100kGP. Here is example SQL using a participant_id list called list.
consent_sql<-paste("SELECT participant_id, programme_consent_status FROM participant WHERE programme_consent_status = 'Consenting' AND participant_id IN (",list,")",sep="")consent_query<-labkey_to_df(consent_sql,version,100000)
consent_sql=(f''' SELECT participant_id, programme_consent_status FROM participant WHERE programme_consent_status = 'Consenting' AND participant_id IN {list}''')consent_query=labkey_to_df(consent_sql,version,100000)
consent_sql<-paste("SELECT participant_id, programme_consent_status FROM participant WHERE programme_consent_status = 'Consenting' AND participant_id IN (",list,")",sep="")consent_query<-labkey_to_df(consent_sql,version,100000)
We do not currently have participants who have withdrawn consent in NHS GMS.
Phenotype files (for AVT and GWAS downstream analysis):
Platekey
Phenotype: 0, 1 or score
Covariates: age, sex etc
The original alignments and VCF locations can be found in the cancer_analysis table, whereas a realignment using Dragen can be found in cancer_100K_genomes_realigned_on_pipeline_2 using the participant ID. In this query, we're going to get the tumour platekey, filepath of the somatic small variants VCF for these participants.
filetype<-"somatic_small_variants_vcf_path"path_sql<-paste("SELECT ca.participant_id, ca.",filetype," as ca_filepath, cr.",filetype," as dragen_filepath, ca.tumour_sample_platekey FROM cancer_analysis as ca, cancer_100K_genomes_realigned_on_pipeline_2 as cr WHERE ca.participant_id IN (",participant,") AND ca.participant_id = cr.participant_id",sep="")path_query<-labkey_to_df(path_sql,version,100000)
filetype="somatic_small_variants_vcf_path"path_sql=(f''' SELECT ca.participant_id, ca.{filetype} as "ca_filepath", cr.{filetype} as "dragen_filepath", ca.tumour_sample_platekey FROM cancer_analysis as ca, cancer_100K_genomes_realigned_on_pipeline_2 as cr WHERE ca.participant_id IN {*participant,} AND ca.participant_id = cr.participant_id''')path_query=labkey_to_df(path_sql,version,100000)
filetype<-"somatic_small_variants_vcf_path"path_sql<-paste("SELECT ca.participant_id, ca.",filetype," as ca_filepath, cr.",filetype," as dragen_filepath, ca.tumour_sample_platekey FROM cancer_analysis as ca, cancer_100K_genomes_realigned_on_pipeline_2 as cr WHERE ca.participant_id IN (",participant,") AND ca.participant_id = cr.participant_id",sep="")path_query<-labkey_to_df(path_sql,version,100000)
The alignments and VCF locations can be found in the cancer_analysis table. In this query, we're going to get the tumour platekey, filepath of the somatic small variants VCF for these participants.
filetype<-"somatic_small_variants_vcf_path"gms_path_sql<-paste("SELECT participant_id, ",filetype,", tumour_sample_platekey FROM cancer_analysis WHERE participant_id IN ('",paste(gms_list,collapse="', '")", sep="")gms_path_query<-labkey_to_df(gms_path_sql,gms_version,100000)
filetype="somatic_small_variants_vcf_path"gms_path_sql=(f''' SELECT participant_id, {filetype}, tumour_sample_platekey FROM cancer_analysis WHERE participant_id IN {*participant,}''')gms_path_query=labkey_to_df(gms_path_sql,gms_version,100000)